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ABSTRACT
An immune inspired model that can detect anomalies, even
when trained only with normal samples, and can learn from
encounters with new anomalies is presented. The model
combines a negative selection algorithm and a self-organizing
map (SOM) in an immune inspired architecture. The pro-
posed system is able to produce a visual representation of
the self/non-self feature space, thanks to the topological 2-
dimensional map produced by the SOM. Some experiments
were performed on classification data; the results are pre-
sented and discussed.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods,Artificial immune
systems

; H.5.m [Information Systems]: Miscellaneous—Data
visualization,Anomaly visualization

; I.2.6 [Artificial Intelligence]: Learning—Connection-
ism and neural nets,SOM

; I.5.2 [Pattern Recognition]: Design Methodology—
Classifier design and evaluation

General Terms
Algorithms

Keywords
artificial immune systems, negative selection, self-organizing
maps, anomaly detection, anomaly visualization
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1. INTRODUCTION
From a simplistic point of view, the anomaly detection

problem could be seen as a classification problem: a set of
samples has to be classified into normal and abnormal, so it
is possible to train a classifier, using a conventional classi-
fication algorithm, which will do the discrimination task.
However, the problem is much more complex than that.
First, in many real world problems, only normal samples are
available at the training phase, therefore, it is impossible to
train a conventional classifier, since the training algorithm
needs both normal and abnormal samples to build a model
that could discriminate them. Second, the set of possible
anomalies could be potentially infinite. Let us consider, for
instance, the computer virus problem: at a given time, we
know a set of viruses that have attacked computer systems
previously, every time a new unknown virus attacks, it be-
comes part of the set of known viruses, but as far as new
viruses continue to be built, this process will never end. In
this context, it is necessary a system capable of detecting
known and unknown anomalies and able to learn from en-
counters with new anomalies.

This paper presents a model that exhibits some of the
characteristics discussed before: it can detect anomalies,
even when trained only with normal samples, and can learn
from encounters with new anomalies. The model combines
an immune inspired algorithm, negative selection, and a self
organizing map to produce a system that is able to detect
and visualize anomalies, and can learn in a dynamic fashion.
The architecture of the model is clearly immune inspired in-
volving mechanisms such as self/non-self discrimination and
immune learning.

One of the main advantages of the proposed model is that
it generates a visual representation of the self/non-self space,
which is generated by feeding synthetic anomalies, produced
by a negative selection algorithm, along with normal and
abnormal samples to a self-organizing map. This represen-
tation allows the visual discrimination of normal, known ab-
normal, and unknown abnormal regions, helping the under-
standing of the structure of a complex self/non-self feature
space.
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The rest of this paper is organized as follows: in Section
2, related work is presented; Section 3 presents a detailed
description of the proposed model; Section 4 discusses the
experiments that were performed, including the experimen-
tal setup, the results and their discussion; finally, Section 5
presents some conclusions and suggestions for future work.

2. BACKGROUND WORK

2.1 Negative Selection Algorithm
The Negative Selection (NS) algorithm [12] is based on

the principles of self/non-self discrimination in the immune
system. It uses as input a set of strings that represents
the normal data (self set) in order to generate detectors in
the non-self space. The negative detectors are chosen by
matching them to the self strings: if a detector matches
a self string, it is discarded, otherwise, it is kept. There
exist efficient implementations of the algorithm (for binary
strings) that run in linear time with the size of self [10,
12, 19]. Other versions of the algorithm, which work with
alternative representations, such as real-valued vectors, have
been proposed [14, 16].

There are different variations of the algorithm, which have
been applied to solve anomaly detection problems [8, 19],
fault detection problems [6, 26], to detect novelties in time
series [7, 14], and to function optimization [3].

2.2 Self/non-self discrimination and immune
learning

Artificial immune systems (AIS) which model the self/non-
self discrimination function of the natural immune system
(NIS) are mainly based on the NS algorithm discussed be-
fore, nevertheless, new models have been proposed, which
are based on danger theory [1, 24].

Other AIS models, which are based on the idiotypic im-
mune network theory [20] and clonal selection principle, em-
ulate the learning capability of the NIS, which is able to learn
from its interaction with the environment.

Both categories of AIS models, self/non-self discrimina-
tion based and immune learning based, have been exten-
sively and independently investigated since the beginning of
AIS research [4, 9]; however, there is not much work on com-
bining these two approaches in one model. The exception are
the security system architectures inspired by the NIS such
as those proposed by Kephart [21], Dasgupta [5], Williams
et al. [17, 27], and Hofmeyr et al.[19], which include differ-
ent features exhibited by the NIS including self/non-self dis-
crimination and immune learning. However, it is important
to highlight that these are high level architectures designed
with a specific application in mind: computer security.

2.3 Anomaly visualization
Usually, the anomaly detection problem arises in context

where the monitored system is very complex in structure
and function (computer systems, computer networks, man-
ufacturing processes, etc). Monitoring this kind of systems
is really challenging, even for humans, because of the high
number of variables involved and the complex dynamic. In-
formation visualization techniques could help to deal with
this complexity, since human perception could detect unex-
pected features in visual displays and recall related images
to detect anomalies [25].

Most of the work done in anomaly visualization has been
restricted to the area of computer security. Published work
includes: systems for security log visualization [2, 13, 25],
network traffic visualization [23], and network structure and
activity visualization[11].

2.4 Self-Organizing Maps
A self-organizing map (SOM) is a type of neural network

that uses competitive learning [18, 22]. A SOM is able to
capture the important features contained in the input space
and provides a structural representation that preserves a
topological structure. The output neurons of a SOM are
organized in a one- or two-dimensional lattice. The weight
vectors of these neurons represent prototypes of the input
data that can be interpreted as the cluster centroids of sam-
ples with similar features.

3. NS-SOM ANOMALY DISCRIMINATION
MODEL

The proposed model combines a NS algorithm and a SOM
network to produce a 2-dimensional map that represents the
feature (self/non-self) space. The trained map is composed
of nodes (SOM neurons) that are able to recognize differ-
ent type of inputs. This allows to classify new samples as
normal or abnormal and to visualize them as points in a
2-dimensional representation of the feature (self/non-self)
space.

The NS-SOM anomaly discrimination model consist of
three phases (see Figure 1) with different goals:

• Phase 1: self tolerization. Normal samples are used
to train a SOM that is able to discriminate between
normal and abnormal samples.

• Phase 2: primary response (affinity matura-
tion). Normal and abnormal samples are presented to
the map. If the samples are unlabeled, the map classi-
fies them as normal or abnormal, using labels assigned
to each SOM node during the self tolerization training
phase. If the samples are labeled, this information is
used to update the label of the cells to reflect the class
of input they recognize (normal, unknown anomaly,
known anomaly).

• Phase 3: secondary response. Unlabeled samples
are presented to the map. The map can classify the
input in different categories including normal and dif-
ferent types of anomalies.

The self tolerization phase uses an NS algorithm to produce
artificial anomalies from the normal samples. The idea of
using an NS algorithm to produce artificial anomalies in-
stead of non-self detectors was proposed by Gonzalez et al.
[14, 15]. In that work, NS-generated artificial anomalies
were used to feed a classifier training algorithm in order to
produce an anomaly classifier. Here, a similar approach is
followed, but a SOM training algorithm is used instead of a
classifier training algorithm. The SOM training algorithm
produces a network whose node weights represent points in
the feature space reflecting the structure of the normal and
artificial abnormal samples used for training. Some nodes
represent normal samples, and the others represent abnor-
mal samples. The nodes are labeled accordingly with the
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Figure 1: NS-SOM model structure. The model consist of three phases: self tolerization, primary response
(affinity maturation), and secondary response. The squared arrange of nodes corresponds to a self-organizing
map, where black, gray, and white labels represent normal, unknown anomaly, and known anomaly respec-
tively.

category they represent. Notice that the use of a NS al-
gorithm to generate artificial anomalies is very important
since, in many real world problems, only normal samples
are available, and training a SOM with only normal samples
will produce a map that only reflects the structure of the
self space ignoring the non-self space.

In this work, the feature (self/non-self) space corresponds
to an n-dimensional real valued space; therefore, it is neces-
sary to use an NS algorithm that could deal with this real
valued representation. For this work, the randomized real-
valued negative selection (RRNS) algorithm is used [16].

During the second phase, if unlabeled samples are pre-
sented, the network can classify them as normal or abnor-
mal; this constitutes the primary response of the system.
The classification is done by finding the node that is clos-
est to the input (called the winner node), and classifying
the input depending on the label of this node (normal or
abnormal). If the input samples are labeled, they could be
used to improve the accuracy of the classification (affinity
maturation) by changing node labels1. Node labels are as-
signed by finding the closest labeled sample for each node
and assigning the sample’s label to the corresponding node.
This strategy could be generalized to use k -nearest neighbor
classification; in this case, the k closest samples are used and
the label of the majority is assigned.

1Notice that the weights of the node could be changed, and,
probably, this will improve the classification accuracy. How-
ever, we chose not to modify the weights to keep the initial
version of the model simple. Additional experimentation is
required to determine the impact of modifying weights dur-
ing the second and third phases.

In the third phase, secondary response, new unlabeled
samples are presented and they are classified accordingly
with the label of the winner node. The network is expected
to produce a more specific response that could identify the
kind of input more precisely as normal or as a specific kind
of anomaly.

Notice that the first phase is executed just once, but the
second and third phases could be executed as many times
as sets of new samples are available. If the samples belong
to an anomaly class that is presented for the first time, the
system generates a primary response, otherwise it produces
a secondary response.

A visual representation of the feature (self/non-self) space
could be generated by drawing the 2-dimensional grid corre-
sponding to the network, and assigning each node a different
color depending on the category it represents (normal, un-
known anomaly, or known anomaly). A new input could be
visualized by highlighting the node that gets activated when
the sample is presented. An assessment of the type of input
presented could be easily done be identifying the color of the
highlighted node.

4. EXPERIMENTATION
In order to test the proposed approach with real data, we

used two data sets composed of different classes. One of the
classes was considered as normal and the remaining classes
were considered as abnormal. The data set was divided in
training and test subsets. Normal samples from the train-
ing subset were used as input for the first phase. Normal
and abnormal samples from the training subset were used
as labeled samples during the second phase. Normal and ab-
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normal samples from the test subset were used as unlabeled
samples to test the generalization capability of the model
during the second and third phases.

The results are evaluated by calculating confusion ma-
trices, which account the predicted class and the real class
for every test sample presented. The purpose of these ex-
ploratory experiments is to evaluate the capability of the
model to represent the structure of the feature (self/non-
self) space and to differentiate diverse kind of anomalies.

4.1 Experimental setup
The data sets used were the Iris data set and the Wis-

consin Breast Cancer data set2. Both data sets have been
widely used to test classification algorithms. In both data
sets, the attributes were normalized to fit the [0, 1] real inter-
val. Training and test sets were generated using 10-folding
cross validation. Five experiments were performed for each
different pair of training and test subsets totaling 50 exper-
iments per data set.

The RRNS algorithm [16] was run using as input the
normal data from the training subset to generate a num-
ber of detectors (100 for Iris data set, 300 for Breast Can-
cer data set). The algorithm parameters were: self radius,
rself = 0.1; minimum accepted transitions, ηmin = 0.3; tem-
perature decay rate, α = 0.9; neighborhood radius decay
rate, αpert = 0.95; self covering importance coefficient, β
= 1; and the number of iterations = 600. Two different
SOM topologies were used with a rectangular output layer
of 8×8 and 16×16 nodes. The SOM network was trained
using the SOM-PAK package3. The parameters of the al-
gorithm were: random weight initialisation; training rates,
α1 = 0.05 and α2 = 0.02; neighborhood radius, r1 = 10 and
r2 = 3; number of iterations for first and second training,
1000 and 10000 respectively; and bubble neighborhood.

4.2 Iris data set experimental results
The Iris data set contains 3 classes of 50 4-dimensional in-

stances each, where each class refers to a type of iris plant.
One class is linearly separable from the other two, the latter
are not linearly separable from each other. The data set is
adapted to be used for anomaly detection testing by consid-
ering one class as normal class and the others as abnormal
classes; therefore, experiments were made in such a way that
each class was considered as normal in different independent
executions. A total of 150 experiments were performed (50
experiments per class).

Figure 2 shows a visual representation of the network
(SOM) evolving through the different phases of the model.
The black zone represents the self (normal) region, the gray
and white zones represent nodes that detect unknown and
known anomalies respectively. In this case, class 1 was taken
as normal. The first phase, self tolerization, produces an ini-
tial configuration of the network that is able to discriminate
between normal and abnormal samples, this is shown in Fig-
ure 2(a), where the feature space is divided in a normal (self)
region and unknown anomalies (non-self) region. At this
point, the network performs an affinity maturation process

2UCI repository of machine learning databases
and domain theories ftp://ftp.ics.uci.edu/pub/
machine-learning-databases
3Available at the Laboratory of Computer and Information
Science of the Helsinki University of Technology home page:
http://www.cis.hut.fi/

Table 1: Average detection rates (ADR) and aver-
age false alarm rates (AFAR) over 50 experiments
(per class) for the primary response phase. Each col-
umn represents the results produced when a specific
class was used as normal. The standard deviation is
reported between parentheses.

Normal Class
1 2 3

ADR 92.0%(10.8%) 51.6% (5.8%) 47.4% (20.1%)

AFAR 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%)

Table 2: Average detection rates (ADR) and average
false alarm rates (AFAR) over 50 experiments (per
class) in secondary response. Each column repre-
sents the results produced when a specific class was
used as normal. The standard deviation is reported
between parentheses.

Normal Class
1 2 3

ADR 92.2% (10.9%) 81.4% (15.5%) 80.0% ( 15.1%)

AFAR 0.0% (0.0%) 2.4% (7.7%) 0.8% (3.9%)

(second phase), so that some nodes become more specific.
Figures 2(b), 2(c) and 2(d) show the results of the primary
response phase (second phase) when new labeled samples
are presented, including class 2 and 3 data. Notice that
the white zones correspond to nodes that represent known
anomalies, which make the network able to remember previ-
ous encounters discriminating between known (white zones)
and unknown (gray zones) anomalies.

Table 1 summarizes the results of the primary response
phase for different normal classes. Each value corresponds
to the average over 50 experiments, where test samples, dif-
ferent to the ones used for training, are presented to the
NS-SOM model. The detection rate is the percentage of
well classified anomalies and the false alarm rate is the per-
centage of the normal samples erroneously classified. The
results are consistent with the structure of the data set, i.e.
class 1 is linearly separable from the other two classes, so it
is easy to discriminate, but classes 2 and 3 overlap.

Table 2 summarizes the secondary response results. The
detection rates were improved, showing the effect of the
affinity maturation process. However, the false alarm rate
increases for classes 2 and 3. It has to do with the fact that
classes 2 and 3 overlap. The affinity maturation improves
the detection rate by reducing the self region area, but this
increases the false alarm rate, since normal samples could
lie outside the identified self region.

Table 3 shows a more detailed view of the results of the
secondary response phase. The rows represent the real class
of the samples input to the model. The columns represent
the class predicted by the model grouped by the class used as
normal. U.A. means unknown anomaly. As before, the table
entries correspond to the average of 50 different experiments.
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(a) (b)

(c) (d)

Figure 2: Network evolution through the different phases of the model. Black, white and gray zones represent
normal class, known anomalies and unknown anomalies respectively. After the first phase, self-tolerization, a
gray region appears representing unknown anomalies (a). At the end of the second phase, primary response,
white regions appear in the map representing known anomalies. (b), (c) and (d) show the state of the network
after new samples from class 2 (b), class 3 (c), and classes 2 and 3 (c) were presented.

Table 3: Confusion matrices for the secondary response phase for the Iris data set. The values correspond to
the mean of 50 experiments. The rows represent the real class of the input samples. The columns represent
the class predicted by the model. U.A. means unknown anomaly. The data subsets used for test have 5
samples per class, so the diagonal elements of an ideal confusion matrix must be equal to 5.

Normal Class 1 Normal Class 2 Normal Class 3
Predicted Class

Real class 1 2 3 U. A. 1 2 3 U. A. 1 2 3 U. A.
1 5.0 0.0 0.0 0.0 3.6 0.0 0.0 1.4 4.0 0.0 0.6 0.4
2 0.0 4.4 0.1 0.5 0.0 4.9 0.1 0.0 0.0 3.7 1.3 0.0
3 1.2 1.1 0.9 1.8 0.1 2.9 2.0 0.0 0.0 0.1 4.9 0.0
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Table 4: Average detection rates (ADR) and average
false alarm rates (AFAR) over 50 experiments in pri-
mary and secondary responses for the Breast Can-
cer Data Set. The standard deviation is reported
between parentheses.

Primary
Response

Secondary
Response

ADR 93.8% (5,7%) 95.3% (4.9%)
AFAR 3.7% (2.4%) 4.1% (2.6%)

Table 5: Confusion matrices of the primary and sec-
ondary response phases for the Breast Cancer data
set. The values correspond to the mean of 50 experi-
ments. The standard deviation is reported between
parentheses. The data subsets used for test have
between 44 and 45 normal samples and between 23
and 24 abnormal samples.

Primary Response Secondary Response

Real Predicted Class

Class Normal Abnor. Normal Abnor.

Normal 42.7 (1.3) 1.7 (1.1) 42.6 (1.4) 1.8 (1.1)

Abnor. 1.5 (1.3) 22.4 (2.0) 1.1 (1.2) 22.8 (1.2)

4.3 Breast cancer data set experimental
results

Each record in this data set is conformed by nine numer-
ical attributes and the label (benign or malign). The data
is composed by 699 records, but 16 of them have missing
values (we did not use these records).

The results of the primary and secondary response phases
are shown in Table 4 and Table 5. Interestingly, the results of
the primary response phase are good, despite the model were
trained only with normal samples. This indicates that the
self subspace has a simple structure and it does not overlap
with the non-self subspace. The results of the secondary
response phase are slightly better than the results of the
primary response phase. In this case, the affinity maturation
process did not have much effect on the accuracy of the
model.

Figure 3 shows a typical 2-dimensional representation of
the self/non-self space for this data set generated by the
NS-SOM model.

4.4 Discussion
The overall performance of the NS-SOM model over these

two data set is good. It produces an acceptable self/non-self
discrimination, which is improved by the affinity matura-
tion process carried on during the primary response. The
secondary response is more specific and it is able to discrim-
inate the different types of anomalies (in the case of the Iris
data set).

These results are not as good as other results reported
for the same data sets, but it is important to highlight that
the particular experimental setup used in this set of experi-
ments is different to the typical experimental setup used to
test conventional classifications algorithms. In this case, the

Figure 3: Visual representation of a typical SOM
map generated by NS-SOM for the Breast Cancer
data set. Black, white, and gray zones represent nor-
mal class, known anomalies, and unknown anomalies
respectively.

data set is gradually shown to the NS-SOM model: first,
the normal class is presented, allowing the model to create
an internal representation of the self/non-self space; next,
the remaining (abnormal) classes are presented, allowing the
model to update the labels, not the weights, of the network
nodes.

In the visual representation of the self/non-self space pro-
duced by the NS-SOM model, it is possible to distinguish
clearly defined areas of normal, known abnormal and un-
known abnormal regions of the feature space. This helps to
usnderstand the structure of a possibly complex self/non-
self space, and may give insights on the subjacent system
function or problem structure.

5. CONCLUSIONS
An AIS model that exhibits self/non-self discrimination

and immune learning capabilities is presented. The model
combines an NS algorithm and a SOM training algorithm
to produce a network that can discriminate normal samples
from abnormal samples and can learn from its encounters
with antigens to improve the specificity of its response.

One remarkable characteristic of the model is its ability to
generate a 2-dimensional visual representation of the feature
space. This representation facilitates the understanding of
the structure of the self/non-self space by producing a visual
discrimination of the normal, known abnormal and unknown
abnormal regions. This feature could be useful for building
interactive visualization tools, such as a graphical anomaly
monitoring system.

The NS-SOM model could give some insight on the nature
of the problem of building a practical model that combines
self/non-self discrimination and immune learning. Also, it
might serve as a basis to build a more complex model that
could be applied to solve real problems.

Experiments using two well known classification data sets
were carried on. Based on the results it is possible to make
the following remarks:
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• The model could produce a network that captures the
structure of the normal samples used for training. This
could be observed in the 2D topological map associated
with the network, which assigns a set of neighbor nodes
to the normal and abnormal subspaces respectively.

• During the second phase, primary response, the model
was able to perform an acceptable discrimination be-
tween normal and abnormal samples when trained only
with normal samples.

• In the third phase, secondary response, this discrim-
ination was improved by the affinity maturation pro-
cess carried on during the second phase of the model,
mainly for the Iris data set. Also, the model was able
to distinguish the two different kinds of anomalies with
a good accuracy.

The results are encouraging and suggest that it is worthy to
pursue further research to improve the model. Some of the
possible research paths to be explored are:

• Performing a more systematic experimentation with
other data sets that could assess the real strength of
the model and its sensitivity to the parameters.

• Allowing a better adaptation of the model during the
second and third phases, by performing a better affin-
ity maturation. This could be accomplished by apply-
ing the SOM training algorithm (or a Learning Vector
Quantization algorithm) to adjust the vectors repre-
senting the nodes to get and improved matching of the
input samples.

• Using an AIS immune network model instead of a SOM
network.
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